7 research outputs found

    A review on modelling methods, tools and service of integrated energy systems in China

    Get PDF
    An integrated energy system (IES) is responsible for aggregating various energy carriers, such as electricity, gas, heating, and cooling, with a focus on integrating these components to provide an efficient, low-carbon, and reliable energy supply. This paper aims to review the modeling methods, tools, and service modes of IES in China to evaluate opportunities for improving current practices. The models reviewed in this paper are classified as demand forecasting or energy system optimization models based on their modeling progress. Additionally, the main components involved in the IES modeling process are presented, and typical domestic tools utilized in the modeling processes are discussed. Finally, based on a review of several demonstration projects of IES, future development directions of IES are summarized as the integration of data-driven and engineering models, improvements in policies and mechanisms, the establishment of regional energy management centers, and the promotion of new energy equipment

    Photoinduced Synthesis of Hierarchical Flower-Like Ag/Bi2WO6 Microspheres as an Efficient Visible Light Photocatalyst

    No full text
    A series of three-dimensional microflower-like Ag/Bi2WO6 composites were synthesized through a simple and practical photoreduction process with different photoreduction times. The UV-visible diffuse reflectance spectra indicate that the spectrum of Ag/Bi2WO6 is significantly red-shifted compared to pure Bi2WO6 microspheres in the visible light region. The photocatalytic activities of the as-prepared samples were evaluated by the decolorization of rhodamine B under visible light irradiation. The photocatalytic reaction rate constants of the Ag/Bi2WO6 with a photoreduction time of 20 min was 3.60 times bigger than those of pure Bi2WO6. The enhanced photocatalytic activity could be attributed to the synergistic effect of increased light absorption range and the effective separation of photogenerated carriers caused by Ag nanoparticles

    Construction and Application of a Non-Enzyme Hydrogen Peroxide Electrochemical Sensor Based on Eucalyptus Porous Carbon

    No full text
    Natural eucalyptus biomorphic porous carbon (EPC) materials with unidirectional ordered pores have been successfully prepared by carbonization in an inert atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification, microstructure and morphology analysis. The carbon materials were used to fabricate electrochemical sensors to detect hydrogen peroxide (H2O2) without any assistance of enzymes because of their satisfying electrocatalytic properties. It was immobilized on a glassy carbon electrode (GCE) with chitosan (CHIT) to fabricate a new kind of electrochemical sensor, EPC/CHIT/GCE, which showed excellent electrocatalytic activity in the reduction of H2O2. Meanwhile, EPC could also promote electron transfer with the help of hydroquinone. The simple and low-cost electrochemical sensor exhibited high sensitivity, and good operational and long-term stability
    corecore